【大学物理(2)】

(University Physics (2))

一、基本信息

课程代码:【2110078】

课程学分:【3学分】

面向专业:【机械设计制造(沃恩合作)】

课程性质:【公共基础课】

开课院系:教育学院(通识教育学院)

使用教材: 教材【大学物理学下 赵近芳 北京邮电大学,2017年9月第5版】

参考书目【物理学与人类文明十六讲 赵峥编,2008年版,高等教育出版社。

物理学原理在工程技术中的应用(第四版) 马文蔚主编 2015年版,高等教育出版社。

时间简史 史蒂芬•霍金 2014年版,湖南科技出版社。】

课程网站网址:

http://mooc1.chaoxing.com/course/211288569.html

先修课程:【大学物理 1 2100077 (3), 高等数学(上) 2100013 (6)】

二、课程简介

《大学物理(2)》主要内容有真空中的静电场、稳恒磁场、光学和物理实验。

通过本课程的学习,使学生掌握电磁学、光学等物理学基本概念、基本理论和基本规律,能用微积分方法求解电磁学问题,能运用物理学知识解释自然科学问题,通过进一步深入学习能够分析和解决专业工程中的遇到的物理问题。

通过物理实验的基本训练,逐步具备运用物理概念、物理实验方法进行科学实验和测量的能力;培养学生实事求是的科学作风、认真负责的工作态度以及遵守纪律、爱护公共财物的优良品德。

同时把课程思政有效地融入其中,培养学生建立辨证唯物主义世界观,养成独立思考和批判精神习惯;培养学生高尚人格、爱国情怀、激发民族自豪感和报国热情;培养学生求实创新精神和科学美感。

三、选课建议

适合理工类本科专业,在二年级学习,要求有大学物理(1)和高等数学的基础。

四、课程目标/课程预期学习成果

序号	课程预期 学习成果	课程目标 (细化的预期学习成果)	教与学方式	评价方式
1	L012	自觉遵守校纪校规。	课堂授课	课堂表现
2	L021	结合专业知识,能够将自然科学运用到复杂 工程问题的恰当表述中。	课堂授课	考试
3	L032	应用书面形式,阐释自己的观点,有效沟通。	课堂授课	实验报告 作业习题

五、课程内容

单元	知识点与	教学重点
平儿	能力要求	与难点

1. 电场	1. 知道静电场的电场强度和电势的概念,理解静电场的规律: 高斯定理和环路定理 。学会运用高斯定理分析电场强度的条件和方法。 2. 理解 导体的静电平衡条件 ,运用导体平衡条件分析有关静电场中导体的有关问题。	 电场计算 高斯定理及应用 静电平衡 电场强度和电势的关系 电势
2. 磁场	1. 掌握 磁感应强度 的概念,理解稳恒磁场的规律: 毕奥-萨伐尔定律、磁场高斯定理和安培环路定理 。 2. 知道运用安培环路定理分析磁感应强度的条件和 方法。学会分析计算带电体在均匀磁场中的受力。	1. 毕奥-萨伐尔定律 2. 磁场高斯定理 3. 安培环路定理 2. 带电体在磁场中的受力
3. 光学	1. 知道获得 相干光 的方法 2. 理解 光程 的概念、 光程差 和 相位差 的关系 3. 学会分析 杨氏双缝干涉 条纹及 薄膜等厚干涉 条纹 的位置。 4. 知道 光栅衍射 公式,选做光栅衍射实验,用分光 计测量光源波长。	1. 光程差 2. 杨氏双缝干涉干涉条纹。 3. 薄膜等厚干涉干涉条纹。

六、课内实验名称及基本要求

实验 序号	实验名称	主要内容	实验时 数	实验 类型	备注
1	电表改装	理解将电流表改装成直流电流表和直流电压表,掌握扩大电流量程的原理,运用原理对电表改装和校正,分析一个小型设计实验的全过程。	3 学时	综合型	必做
2	等厚干涉	掌握光的干涉原理,观察等厚干涉的现象与特点,计算透镜的曲率 半径,分析误差来源。	3 学时	综合 型	必做
3	光栅衍射	了解光的衍射原理,观察光衍射的现象与特点,计算光源的波长。	3 学时	综合 型	选做

七、评价方式与成绩

总评构成(1+X)	评价方式	占比
1	闭卷考试	40%
X1	课堂表现、作业习题	20%
X2	实验报告 1	20%
Х3	实验报告 2	20%